
Petuum Bösen Reference Manual

Jinliang Wei

Carnegie Mellon University, School of Computer Science

Revision 0.2
Last Update: July 10, 2015



Bösen Essentials
A Brief Introduction

1 What is Bösen

Bösen is a key-value store that allows different processes to share access to a set
of variables. In the context of data-parallel ML applications, data is partitioned
across multiple machines which are connected via a common network, the model
or sufficient statistics of the model is typically shared by the learning processes.

Since sharing parameters over network involves high overhead of network
communication, it is encoraged for the application developers to construct their
applications in a way that minimizes parameter sharing and only store the pa-
rameters that have to be shared across processes in Bösen.

2 High-Level System Abstraction

The system consists of a Server and multiple Workers. The Server maintains
the master copy of the parameters and propagates the workers’ writes (updates)
to other workers.

The workers access the parameters via a client library. The client library
caches the previously accessed parameters to speedup future accesses. The client
side cache is referred to as process storage.

Writes to the parameter are inserted into an update table, which is referred
to as OpLog in the code.

3 Bösen Data Abstraction

In Bösen, the parameters (key-value pairs) stored are organized as Tables,
and each table consists of multiple Rows. Each cell in a row is identified by a
Column ID, and typically stores one parameter. In other words, parameters
stored in Bösen is identified by a tuple of Row ID and Column ID.

Table-Row also represents the underlying storage format. Bösen allows
the application to choose the most suitable data structure for organizing data
stored in a row. We even allow user-defined Rows, which will be discussed in
later sections.

Each table has its own update table. The update table also consists of
rows, which are referred to as row oplog.

4 Creating Your First Bösen Application

In this section, we create a simple Bösen application that has only one single-
threaded client and involves only one Table.



Step 0. Include the Bösen header files.

#include <petuum_ps_common/include/petuum_ps.hpp>

This is the only header file that needed for all Bösen APIs.

The first step is to initialize the Bösen environment. The thread that ini-
tializes the environment is referred to as the init thread.

In this example, we run only one worker process. In the case of multiple
worker processes, the same initializaiton process should happen on all worker
processes in cluding create all tables.

Step 1. Register row types.

The Bösen allows applications to use different row types. In order for the
Bösen to create rows of the correct type, the rows have to be registered with
the Bösen before the computation starts. Registration is done by the following
API, which creates a mapping from row ID (a 32-bit integer) to the row type.
Then the application may refer to the row ID for the corresponding type when
creating tables.

In this example, we will a templatized vector row type provided by Bösen .
The template parameter is the element value type stored in the row. We register
the row type petuum::DenseRow<int> (value type is int) with Bösen as:

// register row type petuum::DenseRow<int> with ID 0.

petuum::PSTableGroup::RegisterRow<petuum::DenseRow<int> >(0);

Now we can refer to the row type with integer 0.

Step 2. Bösen Initialization.

For this simple application, the only configuration parameter needs to be
set is the host map. We need to add one entry for each worker process. Each
entry has an ID (IDs are a contiguous range of integers, starting from 0); an IP
address, such as “127.0.0.1”; and an open, unsed port number, such as “10000”.

Other configuration parameters will become necessary for distributed appli-
cations and we will discuss them later.

The second parameter for petuum::PSTableGroup::Init() is a boolean flag
indicating whether the init thread intends to access any table API – APIs defined
in petuum::Table and petuum::PSTableGroup::GetTableOrDie(). Typically,
this flag is set to false.

petuum::TableGroupConfig table_group_config;

table_group_config.host_map.insert(std::make_pair(0, HostInfo(0,

"127.0.0.1", "10000")));

petuum::PSTableGroup::Init(table_group_config, false);

Step 3. Create Tables.

petuum::ClientTableConfig table_config;



table_config.table_info.row_type = 0;

table_config.table_info.row_capacity = 100;

table_config.process_cache_capacity = 1000;

table_config.oplog_capacity = 1000;

// here 0 is the table ID, which will be used later to get table.

bool suc = petuum::PSTableGroup::CreateTable(0, table_config);

The example above lists the minimal set of configuration parameters that an
application program must set and we explain their meanings below.

Name Default Explanation

table info.row type N/A The row type to be used with this table.

table info.row capacity 0 For the dense row type, we must specify its capacity.

process cache capacity 0 The maximal number of rows in this table.

process cache capacity 0 The maximal number of rows that can be written to.

Once all tables are created, we need to finalize the table creation phase by
calling

petuum::PSTableGroup::CreateTableDone();

Step 4. Create and Run Worker Threads
Create a worker thread that accesses the parameters via the Table interface.

Note that in this example, you are allowed to use only one worker thread.
A worker thread that accesses table APIs is referred to as table thread.
Before a table thread can access the table APIs, it has to register itself

with Bösen via

int thread_id = petuum::PSTableGroup::RegisterThread();

Then it can get a table via

petuum::Table<int> table = petuum::PSTableGroup::GetTableOrDie(0);

The petuum::Table type provides a set of APIs for you to access your pa-
rameters. And we will explain them in later sections.

Once the worker thread is done with the computation, it must deregister
itself before exiting:

petuum::PSTableGroup::DeregisterThread();

In case your init thread needs to access table interface, it has to set the
boolean flag table access in petuum::PSTableGroup::Init() to true, but it



should not register nor deregister (it is registered automatically). However, it
should wait for other threads to register via

petuum::PSTableGroup::WaitThreadRegister();

Step 5. Terminate the Bösen
After all worker threads have successfully exited, we can shut down Bösen:

petuum::PSTableGroup::ShutDown();

5 Compilation

5.1 Compile the Bösen

In the project root directory,

make third_party_core

make ps_lib -j8

The Bösen library relies on a set of 3rd party softwares and they are auto-
matically installed by make third party core.

5.2 Compile Your Application

We suggest you include defns.mk in your Makefile, so the petuum macros can
become visible you.



Bösenr Table Interface

Functions listed in this chapter compose the table interface. A thread that ac-
cesses the table interface is refered to a table thread and must register with
Bösen as explained earlier. The only exception is the init thread, which must
not register but have to assert true for the table access flag when intializing
Bösen.

6 Gain Table Access

In order to read or update any parameter stored in Bösen , the table thread
firsts gets access to the corresponding table, then it can read or update param-
eters via the table interface.

// Gain access to table.

template<typename UPDATE>

petuum::Table<UPDATE> petuum::PSTableGroup::GetTableOrDie(int table_id);

7 Read Parameters

template<typename ROW>

const ROW &petuum::Table::Get(int32_t row_id, RowAccessor *row_accessor

= 0);

This is the default read API and it works for both evictable and non-evictable
client cache types. By default, the client-side cache is non-evictable and we will
explain the difference later.

This function returns a read-only reference to the row stored in the client-side
cache.

If the client-side cache is non-evictable, row accessor may be disgarded.
Even if a valid pointer is provided, it is simply ignored.

However, if the client-side cache is evictable, the row accessor pointer must
point to a valid RowAccessor object. And it will be set to refer to the row being
read.

void petuum::Table::Get(int32_t row_id, RowAccessor *row_accessor);

This is a legacy interface that works only for evictable cache types.



8 Update Parameters

We provide three functions for updating parameters stored in Bösen , for dif-
ferent needs.

If you are updating a single parameter, you can use:

void petuum::Table<UPDATE>::Inc(int32_t row_id, int32_t column_id,

UPDATE update);

However, it is a lot more efficient to update a set of parameters in batch,
using

void petuum::Table<UPDATE>::BatchInc(int32_t row_id, const

UpdateBatch<UPDATE>& update_batch);

If you are updating a contiguous range of parameters in a row, you may want
to use DenseBatchInc():

void petuum::Table<UPDATE>::DenseBatchInc(int32_t row_id,

const DenseUpdateBatch<UPDATE> &update_batch);

9 Completion of A Clock Tick

static void petuum::PSTableGroup::Clock();



Bösen System-wise Configuration

petuum::TableGroupConfig includes system-wise configuration parameters.

10 Set Up A Distributed Application

Extending the single-node application to a distributed cluster requires configur-
ing a few more parameters.

First of all, your host map need to have one entry per process. To make the
configuration easier, we allow the user to use the optional server file, which can
be processed by Bösen utilities:

void petuum::GetHostInfos(std::string server_file,

std::map<int32_t, HostInfo> *host_map);

This functions takes in the path to the server file and automatically set up
the host map object for you.

The server file contains one process per line. Each line has three white-space
separated entries: process ID, IP address, and port number.

An example server file is as below:

0 192.168.1.1 10000

1 192.168.1.2 10000

Inform Bösen about the number of processes that you intend to run and
also the processes’ IDs:

Name Default Explanation

num total clients 1 Number of processes to run.

client id 0 This process’s ID.

11 Run More Worker Threads Per Node

Set the number of applications threads, including the init thread.

Name Default Explanation

num local app threads 2 Number of local application threads, including the init thread.



12 Create More Than One Tables

There could be several reasons that one may want to create multiple tables
including, but not limited to:

1. Different row types, including different row capacities.
2. Different staleness constraints.
3. Exceeding number of rows that cannot fit into one table.

Name Default Explanation

num tables 1 Number of tables the system has.

13 Taking SnapShots and Resume From SnapShots

Name Default Explanation

snapshot clock -1 Freqnency of taking snapshots.

snapshot dir "" Directories the snapshot to be written to.

resume clock -1 Clock number to resume from.

resume dir "" Directories to resume from.

14 Numa Optimization

Name Default Explanation

numa opt false Enable NUMA optimization?

Advanced feature. Use with caution.

14.1 Runtime Statistics

To collect runtime statistics, uncomment this line in defns.mk

PETUUM_CXXFLAGS += -DPETUUM_STATS

Name Default Explanation

stats path "" Path to store stats.



Bösen Table-wise Configuration

15 Choose Client Cache Types

Name Default Explanation

process storage type BoundedDense Type for client parameter storage.

BoundedDense is a contiguous chunk of memory. It works well if your whole
model fits into client machine’s memory. The row IDs that you may access is
restrited to [0, C - 1], where C is the cache capacity.

If you have a large model that does not fit into the memory. You may use
BoundedSparse, which supports eviction. However, it comes with considerable
overhead.

16 Choose Update Table Type

Name Default Explanation

oplog type Dense Type for client update table type.

Use Dense if you use BoundedDense for cache type. Otherwise use Sparse.

17 Staleness Threshold

Name Default Explanation

table info.table staleness 0 SSP staleness threshold.

18 Row Capacity

Some (for example, dense) row types require this to be set.

19 Row OpLog Type

1 is sparse. 0 is dense. Use dense if your updates are dense.



Name Default Explanation

table info.row capacity 0 Row capacity.

Name Default Explanation

table info.row oplog type 1 Row opLog type.

table info.oplog dense serialized false Dense serialize oplog.

table info.dense row oplog capacity 0 Row oplog capacity.

20 Use Thread-Level Cache

Thead cache allows each of your table thread to cache a small number of fre-
quently accessed rows in thread-private memory to avoid lock contention. To
configure the thread cache size:

Name Default Explanation

thread cache capacity 1 Thread cache capacity.

The following functions allows you to read and write to thread cache.

void ThreadGet(int32_t row_id, ThreadRowAccessor* row_accessor);

void ThreadInc(int32_t row_id, int32_t column_id, UPDATE update);

void ThreadBatchInc(int32_t row_id, const UpdateBatch<UPDATE>&

update_batch);

void ThreadDenseBatchInc(int32_t row_id, const DenseUpdateBatch<UPDATE>

&update_batch);



Frequently Asked Questions

1. How many tables should I create?
Consider spliting your parameters into multiple tables if
– It is necessary or benefitiable to use different data structures for rows;
– The namespace of one table is not large enough.

Some people like to directly map some algorithmic concepts into Bösen
tables. Although this is very intuitive, it might not render the optimal per-
formance or might cause you trouble. The most frequently encountered issue
is that the Bösen does not allow applications to dynamically create tables
(tables are all created beforehand). However, you may add as many rows
into an existing table as you need. In this case, you may consider use one
table to represent multiple algorithmic objects by manipulatign the row IDs
and thus you don’t need dynamically create tables.

2. How many rows should I create?
First of all, you should try to put the parameters that are accessed together
into the same row so the cost of calling Get() can be amortized.
On the other hand, row is the unit of data partitioning. What this means
is that each server node in the Bösen is responsible for the rows that fall
under its range. So you should at least have one row for each server node.


	Petuum Bösen Reference Manual

